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Approximation-Based Adaptive Tracking Control of
Pure-Feedback Nonlinear Systems with Multiple

Unknown Time-Varying Delays
Min Wang, Member, IEEE, Shuzhi Sam Ge, Fellow, IEEE, and Keum-Shik Hong, Member, IEEE

Abstract— This paper presents adaptive neural tracking
control for a class of non-affine pure-feedback systems with
multiple unknown state time-varying delays. To overcome the
design difficulty from non-affine structure of pure-feedback sys-
tem, mean value theorem is exploited to deduce affine appearance
of state variables xi as virtual controls αi , and of the actual
control u. The separation technique is introduced to decompose
unknown functions of all time-varying delayed states into a
series of continuous functions of each delayed state. The novel
Lyapunov–Krasovskii functionals are employed to compensate
for the unknown functions of current delayed state, which is
effectively free from any restriction on unknown time-delay
functions and overcomes the circular construction of controller
caused by the neural approximation of a function of u and u̇.
Novel continuous functions are introduced to overcome the design
difficulty deduced from the use of one adaptive parameter. To
achieve uniformly ultimate boundedness of all the signals in the
closed-loop system and tracking performance, control gains are
effectively modified as a dynamic form with a class of even
function, which makes stability analysis be carried out at the
present of multiple time-varying delays. Simulation studies are
provided to demonstrate the effectiveness of the proposed scheme.

Index Terms— Adaptive control, backstepping, neural network,
nonlinear time-delay systems, pure-feedback systems.

I. INTRODUCTION

IN RECENT years, the systematic backstepping technique
has become a powerful method for controlling nonlinear
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systems with a triangular structure. Adaptive backstepping
design was first proposed in [1] to obtain global stability
for parametric strict-feedback systems with overparameteri-
zation, and the overparameterization was overcome by the
introduction of tuning functions in [2]. Adaptive backstepping
design was further developed for a class of uncertain strict-
feedback nonlinear systems with known or unknown constant
input gains (see [3]–[5]). By combining novel Lyapunov func-
tions with neural networks or fuzzy logic systems, adaptive
backstepping design was extensively used to control strict-
feedback nonlinear systems with known or unknown function
input gains (see [6]–[10]). Pure-feedback nonlinear systems
that have a more representative form than strict-feedback
systems have no affine appearance of state variables to be
used as virtual controls and the actual control. This makes
the control design of pure-feedback nonlinear systems difficult
and challenging. In [11], a class of parametric pure-feedback
systems with a triangular structure was studied by adaptive
control. In [12], stable adaptive neural network control was
proven rigorously for general nonlinear systems. Subsequently,
some results appeared on pure-feedback nonlinear systems,
e.g., [13]–[16]. Adaptive neural control was presented for
a class of uncertain pure-feedback nonlinear systems with
a control variable or virtual one in affine form [13], [15],
[16]. Using the input-to-state stability analysis and small-gain
theorem, adaptive neural control was proposed for a class of
non-affine pure-feedback nonlinear systems [14].

Stability analysis and robust control for nonlinear time-
delay systems have attracted considerable attention due to
the great challenge in academic research and demands in
industrial applications. Time delays are often encountered in
many dynamic systems such as rolling mill systems, biological
systems, metallurgical processing systems, network systems,
and so on [17], [18]. Lyapunov–Krasovskii functionals [19]
and Lyapunov–Razumikhin functions [20] are the two main
tools in controlling nonlinear time-delay systems. By com-
bining Lyapunov–Razumikhin functionals and backstepping,
adaptive stabilizing control schemes were presented in [21]
and [22] for a class of strict-feedback nonlinear time-delay
systems with known control input constraints. By Lyapunov–
Krasovskii functionals, the tracking control problem was
solved in [23] for a class of nonlinear systems in a Brunovsky
form. By Lyapunov–Krasovskii functionals and backstepping,
the authors in [24] and [25] solved the tracking problem
for a class of strict-feedback nonlinear time-delay systems
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with parameterized uncertainties. For a class of strict-feedback
nonlinear time-delay systems with unknown virtual control
coefficients and nonlinear time-delay terms, practical adaptive
neural tracking controllers were successfully constructed in
[26]–[28], which guarantees the boundedness of all the closed-
loop signals and achieves tracking performance. Further devel-
opment was shown in [29]–[32] for strict-feedback nonlinear
time-delay systems. In [33] and [34], adaptive neural stabiliz-
ing control was proposed with the help of a novel Lyapunov–
Krasovskii functional.

This paper presents a novel adaptive neural control to solve
the tracking problem of a class of non-affine pure-feedback
systems with multiple time-varying delays. The explicit con-
trols are obtained using the mean value theorem. The novel
Lyapunov–Krasovskii functionals are used to compensate for
unknown functions with current delayed states. Radial basis
function (RBF) neural networks are employed to approximate
unknown packaged functions. The proposed control scheme
guarantees the boundedness of all the signals in the closed-
loop system. The main contributions of this paper are as
follows:

1) the use of the separation technique [35] to decompose
unknown functions of all time-varying delayed states
into a series of positive continuous functions of each
delayed state. This is not only free of any restriction
on unknown time-delay functions, but also solves the
design difficulty from each subsystem with all delayed
states;

2) the use of quadratic-type Lyapunov functions to avoid
the circular construction of controller for the considered
pure-feedback system, when RBF neural networks are
used to approximate the unknown nonlinear functions;

3) the use of norms of unknown neural weight vectors as
the estimated parameters, which makes only an adap-
tation parameter to be tuned online. This significantly
reduces the number of neural network input variables
and alleviates the computational burden.

The rest of this paper is organized as follows.
Section II gives the problem formulation and preliminaries. In
Section III, adaptive neural control is proposed for a class
of pure-feedback nonlinear systems with multiple unknown
state time-varying delays using backstepping and appropriate
Lyapunov–Krasovskii functionals, then the stability of the
closed-loop system is proven rigorously. Simulation studies
are performed to demonstrate the effectiveness of the
proposed control scheme in Section IV. Finally, conclusions
are included in Section V.

II. PROBLEM FORMULATION AND PRELIMINARIES

Consider a class of pure-feedback nonlinear systems with
unknown time-delay functions as follows:

⎧
⎨

⎩

ẋi (t) = fi (x̄i (t), xi+1(t))+ hi (x̄n,τ (t))
ẋn(t) = fn(x̄n(t), u(t)) + hn(x̄n,τ (t))
y(t) = x1(t)

(1)

where 1 ≤ i ≤ n − 1, x̄i (t) = [x1(t), x2(t), . . . , xi (t)]T ∈ Ri

with i = 1, 2, . . . , n, u(t) ∈ R, and y(t) are system state

variables, system control input, and system output, respec-
tively; fi (.) are unknown but smooth and non-affine functions,
hi (.) with hi (0) = 0 are unknown smooth nonlinear time-
delay functions which are defined by hi (x̄n,τ (t)) = hi (x1(t −
τ1(t)), x2(t − τ2(t)), . . . , xn(t − τn(t))) ; τi (t) are unknown
time-varying delays which satisfy τi (t) ≤ τ ; and τ̇i (t) ≤
τmax < 1, i = 1, 2, . . . , n, with τ and τmax being known
constants. For t ∈ [−τ, 0], we have x̄n(t) = ω(t), with ω(t)
being a known continuous initial state vector function. In what
follows, the time variable t is omitted in the delay-free terms
for brevity.

Remark 1: Non-affine structure in the considered pure-
feedback nonlinear system (1) covers many dynamic systems
such as rolling mill systems, biological systems, aircraft flight,
and mechanical systems [36], [37]. It can be seen that the pure-
feedback system (1) has no affine appearance of state variables
xi to be used as virtual controls αi , and of the actual control u
itself. The cascade and non-affine properties make it quite dif-
ficult to find the explicit virtual controls and the actual control
using the backstepping design. Moreover, it can be shown in
the system (1) that each state xi , i = 1, . . . , n is assigned an
independent time-varying delay τi (t), and the considered time-
delay function hi (x̄n,τ (t)) contains not only the previous time-
varying delay states x1(t − τ1(t)), . . . , xi (t − τi (t)), but also
all the later delay states xi+1(t − τi+1(t)), . . . , xn(t − τn(t)).
These time-delay functions hi (x̄n,τ (t)) make controller design
challenging and maybe cause the circular construction of
controller caused by the neural approximation. Therefore, it
is difficult and challenging to control the system (1).

Using the mean value theorem [38], we obtain the following
explicit virtual control and actual control:

fi (x̄i , xi+1)= fi (x̄i , xi0)+ giμi (xi+1 − xi0) (2)

fi (x̄n, u)= fi (x̄n, xn0)+ gnμn (u − xn0) (3)

where giμi := gi (x̄i , xμi ) = ∂ fi (x̄i , xi+1)/∂xi+1|xi+1=xμi
with

i = 1, 2, . . . , n, xn+1 = u, xμi = μi xi+1 + (1 − μi )xi0, 0 <
μi < 1, and xi0 are known at a given time value t0. Then,
substituting (2) and (3) into (1) yields

⎧
⎨

⎩

ẋi = fi (x̄i , xi0)+ giμi (xi+1 − xi0)+ hi (x̄n,τ (t))
ẋn = fi (x̄n, xn0)+ gnμn (u − xn0)+ hn(x̄n,τ (t))
y = x1.

(4)

The control objective of this paper is to design adaptive
neural tracking control such that the system output y follows a
desired reference signal yd , while all the signals in the closed-
loop system remain uniformly ultimately bounded. To this end,
define a vector function as ȳdi = [yd, y(1)d , . . . , y(i)d ]T , i =
1, 2, . . . , n, where y(i)d is the i th time derivative of yd .

Assumption 1: The desired trajectory vectors ȳdi are con-
tinuous and known, ȳdi ∈ �di ⊂ Ri+1 with �di being known
compact sets, i = 1, 2, . . . , n.

Assumption 2: The signs of nonlinear functions gi (.) are
known, and there exists an unknown positive constant b such
that 0 < b ≤ |gi (.)| < ∞, ∀(x̄i , xi+1) ∈ Ri × R. Without
loss of generality, we further assume that gi (.) ≥ b > 0,
i = 1, 2, . . . , n.

In this paper, the following RBF neural network [39],
[40] will be used to approximate any continuous function
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ϕ(Z): Rq → R
ϕnn(Z) = W T S(Z) (5)

where Z ∈ �Z ⊂ Rq is the input vector with q being the
neural network input dimension, W = [w1, w2, . . . , wl ]T ∈ Rl

is the weight vector, l > 1 is the neural network node number,
and S(Z) = [s1(Z), s2(Z), . . . , sl(Z)]T ∈ Rl is the basis
function vector with si (Z) chosen commonly as a Gaussian
function in the following form:

si (Z) = exp

[−(Z − ξi )
T (Z − ξi )

r2

]

, i = 1, . . . , l (6)

where ξi = [ξi1, ξi2, . . . , ξiq ]T is the center of the receptive
field and r is the width of the Gaussian function. As indicated
in [40], the neural network (5) can approximate any continuous
function ϕ(Z) over a compact set �Z ∈ Rq to any arbitrary
accuracy ε as

ϕ(Z) = W∗T S(Z)+ δ(Z), ∀Z ∈ �Z ∈ Rq (7)

where W∗ is an ideal constant weight, and δ(Z) is the
approximation error satisfying |δ(Z)| ≤ ε. For the purpose
of analysis, define W∗ as an unknown ideal constant weight
vector which is an artificial quantity. Typically, W∗ is chosen
as the value of W that minimizes |δ(Z)| for all Z ∈ �Z

W∗ := arg min
W∈Rl

{
supZ∈�Z

|ϕ(Z)− W T S(Z)|
}
.

For Gaussian RBF neural networks, the following lemma
gives an upper bound on the norm of the basis function vector
S(Z), which is borrowed from [14].

Lemma 1 [14]: Consider the Gaussian RBF networks (5)
and (6). Let ρ = 1/2 mini 
= j ‖ ξi − ξ j ‖, then an upper
bound of ‖S(Z)‖ is taken as ‖ S(Z) ‖≤ ∑∞

k=0 3q(k + 2)q−1

e−2ρ2k2/r2 := s.
It has been proven in [41] and [14] that s is a limited value

since the series {3q(k + 2)q−1e−2ρ2k2/r2
, k = 0, 1, . . . ,∞}

is convergent by the ratio test theorem [38]. Moreover, it is
worth pointing out that the limited value s is independent of
neural network inputs Z and neural network node numbers l.

Lemma 2 [35]: For any continuous function h(ζ1, . . . , ζn) :
Rm1 ×· · ·× Rmn → R, satisfying h(0, . . . , 0) = 0, where ζ j ∈
Rm j ( j = 1, 2, . . . , n,m j > 0), there exist known positive
smooth functions ρ j (ζ j ) : Rm j → R, ( j = 1, 2, . . . , n)
satisfying ρ j (0) = 0 such that |h(ζ1, . . . , ζn)| ≤ ∑n

j=1 ρ j (ζ j ).
Lemma 3 [29]: For 1 ≤ j ≤ n, define the set �cz j

given
by �cz j

:= {z j || z j |< 0.2554ν j }. Then, for z j 
∈ �cz j
, the

inequality [1 − 16 tanh2(z j/ν j )] ≤ 0 holds.
Lemma 4: Consider the dynamic system of the form χ̇(t) =

−aχ(t) + cq(t), where a and c are positive constants and
q(t) is a positive function. Then, for any given bounded initial
condition χ(t0) ≥ 0, we have χ(t) ≥ 0 for ∀t ≥ t0.

Proof: For any given bounded initial condition χ(t0), we
obtain the solution to the equation χ̇(t) = −aχ(t)+ cq(t) as

χ(t) = e−a(t−to)χ(t0)+
∫ t

t0
e−a(t−τ )cq(τ )dτ. (8)

Since c and q(t) are positive, the integral term of (8) is
also positive for ∀t ≥ t0. Therefore, (8) implies that under

any given bounded initial condition χ(t0) ≥ 0, χ(t) ≥ 0 for
∀t ≥ t0. This completes the proof of Lemma 4.

In this paper, to construct differentiable control laws, the
following continuous even functions ψ(x), R → R, are
introduced [29]:

ψ(x) = x2 cosh(x)

1 + x2 , ∀x ∈ R (9)

which is continuous and monotonic, that is, for any given
positive constant d , if |x | > d , then ψ(x) > ψ(d).

III. ADAPTIVE NEURAL TRACKING CONTROL

In this section, backstepping is used to develop an adaptive
neural tracking control for pure-feedback nonlinear systems
(1) with multiple time-varying delays. The backstepping de-
sign is based on the following coordinate transformation:
z1 = x1 − yd , zi = xi − αi−1, i = 2, . . . , n, with αi being
virtual control laws. The actual control law u will be designed
in the last step.

For the sake of clarity and convenience, denote ‖z‖ as the
Euclidean norm of vector z, i.e., ‖z‖2 = zT z, define compact
sets �0

Zi
according to [26] and [27] as �0

Zi
:= �Zi − �czi

with open set �czi
in Lemma 3 and compact set �Zi , i =

1, 2, . . . , n. We employ RBF neural networks to approximately
package unknown functions f̂i (Zi ) shown later as

f̂i (Zi ) = W∗T
i Si (Zi )+ δi (Zi ) (10)

where δi (Zi ) is the approximation error and satisfies
|δi (Zi )| ≤ εi , Si (Zi ) is the basis function vector of the RBF
neural network, Z1 = [x1, yd , ẏd ]T ∈ �0

Z1
⊂ R3, Zi =

[x1, x2, . . . , xi , θ̂ , ςi−1, ωi−1]T ∈ �0
Zi

⊂ Ri+3, 2 ≤ i ≤ n, are
input vectors with ςi−1 and ωi−1 being defined later, W∗

i are
unknown ideal constant weight vectors, construct the quadratic
function Vzi and the Lyapunov–Krasovskii functional candi-
date VPi in advance as

Vzi = z2
i

2
, (11)

VPi =
n∑

l=1

(n − l + 1)
∫ t

t−τi (t)

ρ2
li (xi(σ ))

2(1 − τmax)
dσ (12)

and construct the adaptive neural tracking controller for pure-
feedback nonlinear time-delay system (1) as follows:

αi = −ki zi − θ̂

2η2
i

ST
i (Zi )Si (Zi )zi + xi0, (13)

˙̂θ =
n∑

i=1

γ

2η2
i

ST
i (Zi )Si (Zi )z

2
i − σ θ̂ (14)

where 1 ≤ i ≤ n, ηi , γ and σ are positive design parameters,
ki = ki0 + ki1 with ki0 being positive design parameter,
and ki1 = ki2 + εi cosh(zi )/1 + z2

i

∑n
l=1(n − l + 1)ςi , ςi =

∫ t
t−τ ρ

2
li (xi (σ ))/2(1 − τmax)dσ , ki2 is a positive design para-

meter, θ̂ is the estimate of the unknown constant θ which is
specified as θ = max{b−1

∥
∥W∗

i

∥
∥2
, i = 1, 2, . . . , n} with b

defined in Assumption 2. It should be pointed out that, when
i = n, αn is the actual control law u. In what follows, our
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control scheme is designed on the basis of compact sets �0
Zi

for simplicity.
Remark 2: Note that (14) satisfies the conditions of

Lemma 4. For any given initial condition θ̂ (t0) ≥ 0, we thus
have θ̂ (t) ≥ 0 for t ≥ t0. This property is very important and
useful in our design. In fact, it is always reasonable to choose
θ̂ (t0) ≥ 0, since θ̂ (t) is the estimate of an unknown constant
θ and its initial condition is an artificial value. Consequently,
for clarity, we choose the initial condition θ̂ (t0) = 0 of the
adaptation law θ̂ (t) in this paper.

Step 1: Noting z1 = x1−yd and considering the transformed
system (4), the error dynamic is

ż1 = f1(x̄1, x10)+ g1μ1(x2 − x10)+ h1(x̄n,τ (t))− ẏd . (15)

Choosing the quadratic function Vz1 in (11), its time deriv-
ative follows from (15):

V̇z1 = z1 f1(x̄1, x10)+ z1g1μ1(x2 − x10)

+ z1h1(x̄n,τ (t))− z1 ẏd . (16)

Noting Lemma 2 and the definition of h1(x̄n,τ (t)), we have

z1h1(x̄n,τ (t)) ≤ nz2
1

2
+

n∑

l=1

ρ2
1l(xl(t − τl(t)))

2
. (17)

Substituting (17) into (16) yields

V̇z1 ≤ z1 f1(x̄1, x10)+ z1g1μ1(x2 − x10)− z1 ẏd

+ nz2
1

2
+

n∑

l=1

ρ2
1l(xl(t − τl(t)))

2
. (18)

Now, take the Lyapunov–Krasovskii functional candidate
VP1 in (12) to compensate for the time-delay term in (18).
The time derivative of VP1 satisfies

V̇P1 ≤
n∑

l=1

(n − l + 1)
ρ2

l1(x1)

2(1 − τmax)

−
n∑

l=1

(n − l + 1)
ρ2

l1(x1(t − τ1(t)))

2
. (19)

Define V1 = Vz1 + VP1 . It can be verified by (18) and (19)
that

V̇1 ≤ z1( f1(x̄1, x10)+ nz1

2
+

n∑

l=1

(n − l + 1)ρ2
l1(x1)

2z1(1 − τmax)

− ẏd + g1μ1(x2 − x10))+
n∑

l=1

ρ2
1l(xl(t − τl(t)))

2

−
n∑

l=1

(n − l + 1)ρ2
l1(x1(t − τ1(t)))

2
. (20)

Note that it is not feasible to use RBF neural network to
approximate

∑n
l=1(n − l + 1)ρ2

l1(x1)/(2z1(1 − τmax)) in (20)
since it is discontinuous at z1 = 0. Therefore, hyperbolic tan-
gent function tanh(z1/ν1) has to be introduced to overcome the

design difficulty from the term
∑n

l=1(n−l+1)ρ2
l1(x1)/(2z1(1−

τmax)) [29]. In this way, (20) becomes

V̇1 ≤ z1 f̂1(Z1)+ g1μ1z1(x2 − x10)

+
(

1 − 16 tanh2
(

z1

ν1

))

U1 +
n∑

l=1

ρ2
1l(xl(t − τl(t)))

2

−
n∑

l=1

(n − l + 1)ρ2
l1(x1(t − τ1(t)))

2
(21)

where

f̂1(Z1) = f1(x̄1, x10)+ nz1

2
+

16 tanh2
(

z1
ν1

)

z1
U1 − ẏd ,

U1 =
n∑

l=1

(n − l + 1)ρ2
l1(x1)

2(1 − τmax)
.

Note that lim
z1→0

16 tanh2(z1/ν1)U1/z1 exists, and it is fea-

sible to use RBF neural network (10) to approximate the
nonlinear function f̂1(Z1) on the compact set �0

Z1
. Then, (21)

becomes

V̇1 ≤ z1(W
∗T
1 S1(Z1)+ δ1(Z1))+ g1μ1z1(x2 − x10)

+
(

1 − 16 tanh2
(

z1

ν1

))

U1 +
n∑

l=1

ρ2
1l(xl(t − τl(t)))

2

−
n∑

l=1

(n − l + 1)ρ2
l1(x1(t − τ1(t)))

2
.

By

z1W∗T
1 S1(Z1) ≤ bθ

2η2
1

ST
1 (Z1)S1(Z1)z

2
1 + η2

1

2
,

z1δ1(Z1) ≤ bk10z2
1 + ε2

1

4bk10
(22)

and noting z2 = x2 − α1, it can be easily verified that

V̇1 ≤ bθ

2η2
1

ST
1 (Z1)S1(Z1)z

2
1 + bk10z2

1

+ g1μ1z1α1 − g1μ1z1x10 + g1μ1z1z2 + d1

+
(

1 − 16 tanh2
(

z1

ν1

))

U1 +
n∑

l=1

ρ2
1l(xl(t − τl(t)))

2

−
n∑

l=1

(n − l + 1)ρ2
l1(x1(t − τ1(t)))

2
(23)

where k10 and η1 are positive design parameters, and d1 =
η2

1/2 + ε2
1/(4bk10).

From the virtual control (13) and Remark 2, we have

g1μ1z1(α1 − x10) ≤ −bk1z2
1 − bθ̂

2η2
1

ST
1 (Z1)S1(Z1)z

2
1. (24)
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Denote θ̃ = θ − θ̂ . Substituting (24) into (23) yields

V̇1 ≤ −bk11z2
1 + bθ̃

2η2
1

ST
1 (Z1)S1(Z1)z

2
1 + g1μ1z1z2

+
(

1 − 16 tanh2
(

z1

ν1

))

U1 +
n∑

l=1

ρ2
1l(xl(t − τl(t)))

2

−
n∑

l=1

(n − l + 1)ρ2
l1(x1(t − τ1(t)))

2
+ d1. (25)

Remark 3: It can be seen from (16) that design difficulties
mainly come from two nonlinear uncertainties: the coupling
term g1μ1 and the unknown time-delay term h1(x̄n,τ (t)). The
two terms cannot appear in the designed controller due to
the uncertainty, and not be also directly approximated by
the use of neural networks which may result in the circular
construction of controller. To overcome these difficulties, the
following efforts have been made: g1μ1 is effectively dealt
with in (24) by Lemma 4, and only its lower bound is used
for analysis purpose in this paper. From (17), h1(x̄n,τ (t)) is
decomposed into a series of continuous functions ρ2

1l(xl(t −
τl(t))), l = 1, 2, . . . , n of each delayed state xl(t − τl(t)), the
time-varying delay function ρ2

11(x1(t − τ1(t))) with current
delayed state is compensated for by a Lyapunov–Krasovskii
functional VP1 in (12), the other time-varying delay functions
ρ2

1l(xl(t − τl(t))), l = 2, . . . , n, will be compensated for step
by step, thus the time-delay term in (25) can be completely
canceled in the last step of backstepping. The method is
effectively free from any assumption on unknown time-delay
functions hi (x̄n,τ (t)) and overcomes the circular construction
of controller.

Step 2: For z2 = x2 − α1, we have

ż2 = f2(x̄2, x20)+ g2μ2(x3 − x20)+ h2(x̄n,τ (t))− α̇1

where
α̇1 = ∂α1

∂x1
h1(x̄n,τ (t))+ ∂α1

∂θ̂

˙̂
θ + D1 (26)

with D1 = (∂α1/∂x1)( f1(x̄1, x10)+g1μ1(x2−x10))+ ω1, ω1 =
(∂α1/∂ ȳd1) ˙̄yd1+(∂α1/∂ς1)ρ

2
l1(x1)−ρ2

l1(x1(t−τ ))/2(1−τmax).
Choosing the quadratic function Vz2 in (11) and using the

following inequalities:

z2h2(x̄n,τ (t)) ≤ nz2
2

2
+

n∑

l=1

ρ2
2l(xl(t − τl(t)))

2

z2
∂α1

∂x1
h1(x̄n,τ (t)) ≤ nz2

2

2

(
∂α1

∂x1

)2

+
n∑

l=1

ρ2
1l(xl(t − τl(t)))

2

we have

V̇z2 ≤ z2

(

f2(x̄2, x20)+ g2μ2(x3 − x20)+ nz2

2

+ nz2

2

(
∂α1

∂x1

)2

− D1

)

− z2
∂α1

∂θ̂

˙̂
θ

+
n∑

l=1

ρ2
2l(xl(t − τl(t)))

2
+

n∑

l=1

ρ2
1l(xl(t − τl(t)))

2
. (27)

Now, use the Lyapunov–Krasovskii functional candidate
VP2 in (12) and define V2 = V1 + VP2 + Vz2 , and the time
derivative of V2 along (25) and (27) is

V̇2 ≤ −bk11z2
1 + bθ̃

2η2
1

ST
1 (Z1)S1(Z1)z

2
1 + d1

+
(

1 − 16 tanh2
(

z1

ν1

))

U1 + z2g2μ2(x3 − x20)

+ z2( f2(x̄2, x20)+ g1μ1z1 + nz2

2
+ nz2

2

(
∂α1

∂x1

)2

− D1 +
n∑

l=1

(n − l + 1)ρ2
l2(x2)

2z2(1 − τmax)
)− z2

∂α1

∂θ̂

˙̂θ

+
2∑

j=1

n∑

l=1

[

(2 − j + 1)
ρ2

j l(xl(t − τl(t)))

2

−(n − l + 1)
ρ2

l j (x j (t − τ j (t)))

2

]

. (28)

From (28), it is not practical to use RBF neural networks to
approximate the term

∑n
l=1(n − l + 1)ρ2

l2(x2)/(2z2(1 − τmax))
which does not exist as z2 = 0. Similar to Step 1, it can employ
the hyperbolic tangent function tanh(z2/ν2) to compensate the
term. Furthermore, a continuous function v1(Z2) is introduced
to overcome the design difficulty from the term (∂α1/∂θ̂)

˙̂θ .
Therefore, we have

V̇2 ≤ −bk11z2
1 + bθ̃

2η2
1

ST
1 (Z1)S1(Z1)z

2
1 + d1

+
2∑

j=1

(

1 − 16 tanh2
(

z j

ν j

))

U j + z2g2μ2(x3 − x20)

+ z2 f̂2(Z2)+ z2

(

v1 (Z2)− ∂α1

∂θ̂

˙̂
θ

)

+
2∑

j=1

n∑

l=1

[

(2 − j + 1)
ρ2

j l(xl(t − τl(t)))

2

−(n − l + 1)
ρ2

l j (x j (t − τ j (t)))

2

]

(29)

where

f̂2(Z2) = f2(x̄2, x20)+ g1μ1z1 + nz2

2
+ nz2

2

(
∂α1

∂x1

)2

− D1 − v1(Z2)+
16 tanh2

(
z2
ν2

)

z2
U2 (30)

with U2 = ∑n
l=1 (n − l + 1)ρ2

l2(x2)/2(1 − τmax).

Next, using RBF neural networks (10) to approximate
f̂2(Z2) on the compact set �0

Z2
and, employing the similar
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method as (22), we obtain

V̇2 ≤ −bk11z2
1 + bθ̃

2η2
1

ST
1 (Z1)S1(Z1)z

2
1 +

2∑

j=1

d j

+
2∑

j=1

(

1 − 16 tanh2
(

z j

ν j

))

U j + z2g2μ2z3

+ z2g2μ2α2 − z2g2μ2 x20 + bθ

2η2
2

ST
2 (Z2)S2(Z2)z

2
2

+ bk20z2
2 + z2

(

v1(Z2)− ∂α1

∂θ̂

˙̂θ
)

+
2∑

j=1

n∑

l=1

[

(2 − j + 1)
ρ2

j l(xl(t − τl(t)))

2

−(n − l + 1)
ρ2

l j (x j (t − τ j (t)))

2

]

where d j = η2
j/2 + ε2

j/(4bk j0).

Considering the virtual control (13) and adaptation law (14),
and similar to (24), we have

V̇2 ≤
2∑

j=1

(−bk j1z2
j + bθ̃

2η2
j

ST
j (Z j )Sj (Z j )z

2
j + d j )

+
2∑

j=1

(

1 − 16 tanh2
(

z j

ν j

))

U j + z2

(

v1(Z2)− ∂α1

∂θ̂

˙̂θ
)

+
2∑

j=1

n∑

l=1

[

(2 − j + 1)
ρ2

j l(xl(t − τl(t)))

2

−(n − l + 1)
ρ2

l j (x j (t − τ j (t)))

2

]

+ g2μ2 z2z3 (31)

where the term z2(ν1(Z2) − (∂α1/∂θ̂)
˙̂θ) will be considered

later.
Remark 4: It can be known clearly from (14) that the

adaptation law ˙̂
θ contains not only the current variables z1

and z2, but also the latter variables, namely, zi , i = 3, . . . , n.
Therefore, unlike the previous backstepping-based adaptive
neural control schemes, the term (∂α1/∂θ̂)

˙̂
θ in (26) cannot

be used directly to construct the packaged uncertain functions
f̂2(Z2) in (30). As a result, the function ν1(Z2) is intro-
duced to compensate for (∂α1/∂θ̂)

˙̂
θ . Similarly, the function

ν j−1(Z j ) will be introduced to compensate for (∂α j−1/∂θ̂)
˙̂
θ ,

j = 3, . . . , n. The details will be shown later. The functions
ν j−1(Z j ), j = 2, . . . , n, will be defined in the proof of
Theorem 1.

Step k (3 ≤ k ≤ n − 1): Similar to the design method
in Step 2, choose Lyapunov function candidate Vk = Vk−1 +
Vzk + VPk with Vzk in (11) and VPk in (12), for the following
dynamic:

żk = fk(x̄k, xk0)+ gkμk (xk+1 − xk0)+ hk(x̄n,τ (t))− α̇k−1

where

α̇k−1 =
k−1∑

i=1

∂αk−1

∂xi
hi (x̄n,τ (t))+ ∂αk−1

∂θ̂

˙̂
θ + Dk−1 (32)

with Dk−1 = ∑k−1
i=1 (∂αk−1/∂xi )( fi (x̄i , xi0) + giμi (xi+1 −

xi0)) + ωk−1, and ωk−1 = (∂αk−1/∂ ȳd,k−1) ˙̄yd,k−1 +
(∂αk−1/∂ςk−1)(ρ

2
l,k−1(xk−1)−ρl,k−12(xk−1(t−τ ))/2(1 − τmax)).

By introducing the hyperbolic tangent function tanh(zk/νk)
and a continuous function vk−1(Zk), we have

V̇k ≤
k∑

j=1

(

−bk j1z2
j + bθ̃

2η2
j

ST
j (Z j )Sj (Z j )z

2
j + d j

)

+
k∑

j=1

(

1 − 16 tanh2
(

z j

ν j

))

U j + zk gkμk zk+1

+
k∑

j=2

z j

(

v j−1(Z j )− ∂α j−1

∂θ̂

˙̂θ
)

+
k∑

j=1

n∑

l=1

[

(k − j + 1)
ρ2

j l(xl(t − τl(t)))

2

−(n − l + 1)
ρ2

l j (x j (t − τ j (t)))

2

]

(33)

where d j = η2
j/2 + ε2

j/(4bk j0) and U j = ∑n
l=1((n − l + 1)

ρ2
l j (x j )/2(1 − τmax)).

Step n: In this step, the actual control u will be constructed.
For zn = xn − αn−1, we have

żn = fn(x̄n, xn0)+ gnμn (u − xn0)+ hn(x̄n,τ (t))− α̇n−1

where α̇n−1 is given in (32) with k = n.
Choosing Vzn in (11) and using the triangular inequality, we

can obtain

V̇zn ≤ zn

(

fn(x̄n, xn0)+ gnμn (u − xn0)+ nzn

2

+
n−1∑

j=1

nzn

2

(
∂αn−1

∂x j

)2

− Dn−1

)

− zn
∂αn−1

∂θ̂

˙̂θ +
n∑

j=1

n∑

l=1

ρ2
j l(xl(t − τl(t)))

2
.

Taking Lyapunov function candidate Vn = Vn−1+Vzn +VPn

with Vn−1 in (33) and noting the derivative of VPn as

V̇Pn =
n∑

l=1

(n − l + 1)
ρ2

ln(xn)

2(1 − τmax)

− zn

n∑

l=1

(n − l + 1)
(1 − τ̇n(t))ρ2

ln(xn(t − τn(t)))

2zn(1 − τmax)
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we have

V̇n ≤
n−1∑

j=1

(

−bk j1z2
j + bθ̃

2η2
j

ST
j (Z j )Sj (Z j )z

2
j + d j

)

+
n−1∑

j=1

(

1 − 16 tanh2
(

z j

ν j

))

U j − zn
∂αn−1

∂θ̂

˙̂
θ

+
n−1∑

j=2

z j

(

v j−1(Z j )− ∂α j−1

∂θ̂

˙̂θ
)

+ zn

(

gnμn (u − xn0)

+
n−1∑

j=1

nzn

2

(
∂αn−1

∂x j

)2

+ zn−1gn−1μn−1 + fn(x̄n, xn0)

)

+
n∑

l=1

(

n−l+1)
ρ2

ln(xn)

2zn(1 − τmax)
+ nzn

2
− Dn−1

)

.

(34)

Remark 5: It is clearly shown from (34) that the pro-
posed design above has effectively eliminated the functions
hi (x̄n,τ (t)) of delayed states, which contain multiple time-
varying delays. For the sake of clarity, how to compensate
for all the time-varying delay functions hi (x̄n,τ (t)), i =
1, 2, . . . , n is summarized as follows. Firstly, in Step i ,
hi (x̄n,τ (t)) is decomposed into a series of continuous functions
ρ2

il (xl(t − τl(t))), l = 1, 2, . . . , n, in terms of each delayed
state based on Lemma 2. Due to the existence of unknown
time-varying delays τl(t), the functions ρ2

il (xl(t − τl(t))), l =
1, 2, . . . , n cannot be directly approximated by the use of RBF
neural networks. Secondly, in Step i , the Lyapunov–Krasovskii
functional candidate VPi in (12) is carefully designed to
compensate not only for ρ2

ii (xi (t − τi (t))), which is obtained
from the current time-delay function hi (x̄n,τ (t)), but also for
all the time-delay terms with current delayed state xi (t−τi (t)),
i.e., ρ2

j i (xi (t − τi (t))), j = 1, 2, . . . , i − 1, i + 1, . . . , n. As
a result, all the time-varying delay functions ρ2

il (xl(t − τl(t)))
are eliminated under the sum of Vzi and VPi . Last but not
least, the remaining delay-free functions ρ2

il (xl), which are
caused by the use of Lyapunov–Krasovskii functionals to
compensate for ρ2

il (xl(t − τl(t))), are approximated by RBF
neural networks.

Next, we will make more efforts to overcome the design
difficulties derived from

∑n
l=1(n−l +1)ρ2

ln(xn)/2zn(1−τmax)

and (∂αn−1/∂θ̂)
˙̂
θ . Similarly, employ the hyperbolic tangent

function tanh(zn/νn) and a continuous function vn−1(Zn) to
respectively compensate for

∑n
l=1(n − l + 1)[ρ2

ln(xn)/2zn(1 −
τmax)] and (∂αn−1/∂θ̂)

˙̂θ , and we have

V̇n ≤
n−1∑

j=1

(

−bk j1z2
j + bθ̃

2η2
j

ST
j (Z j )Sj (Z j )z

2
j + d j

)

+
n∑

j=1

(

1 − 16 tanh2
(

z j

ν j

))

U j + zn gnμn (u − xn0)

+
n∑

j=2

z j

(

v j−1(Z j )− ∂α j−1

∂θ̂

˙̂θ
)

+ zn f̂n(Zn) (35)

where

f̂n(Zn) = fn(x̄n, xn0)+ nzn

2
+

n−1∑

j=1

nzn

2

(
∂αn−1

∂x j

)2

− Dn−1

+ zn−1gn−1μn−1 +
16 tanh2

(
zn
νn

)

zn
Un − vn−1(Zn)

with Un = ∑n
l=1 (n − l + 1)ρ2

ln(xn)/2(1 − τmax).
Applying the RBF neural network in (10) to approximate

f̂n(Zn) on the compact set �0
Zn

, we can obtain

V̇n ≤
n−1∑

j=1

(

−bk j1z2
j + bθ̃

2η2
j

ST
j (Z j )Sj (Z j )z

2
j + d j

)

+ dn

+
n∑

j=1

(

1 − 16 tanh2
(

z j

ν j

))

U j + zngnμn (u − xn0)

+
n∑

j=2

z j

(

v j−1(Z j )− ∂α j−1

∂θ̂

˙̂
θ

)

+ bθ

2η2
n

ST
n (Zn)Sn(Zn)z

2
n + bkn0z2

n (36)

where dn = η2
n/2+ε2

n/(4bkn0). Constructing the actual control
u in (13) and considering Remark 3, we obtain

gnμn zn(u − xn0) ≤ −bknz2
n − bθ̂

2η2
n

ST
n (Zn)Sn(Zn)z

2
n (37)

with kn = kn0 + kn1. It follows from (36) and (37) that

V̇n ≤
n∑

j=1

(

−bk j1z2
j + bθ̃

2η2
j

ST
j (Z j )Sj (Z j )z

2
j + d j

)

+
n∑

j=1

(

1 − 16 tanh2
(

z j

ν j

))

U j

+
n∑

j=2

z j

(

v j−1(Z j )− ∂α j−1

∂θ̂

˙̂
θ

)

.

Thus, we complete the controller design. Choosing the
Lyapunov function candidate as

V = Vn + bθ̃2

2γ
(38)

we are in the position to state our main result.
Theorem 1: Consider the closed-loop system consisting of

the pure-feedback nonlinear time-delay system (1) under
Assumptions 1 and 2, control laws (13), and the adaptation law
(14). The following properties are guaranteed under bounded
initial conditions with θ̂ (t0) ≥ 0:

1) all the signals in the closed-loop system remain uni-
formly ultimately bounded;

2) the vector Z = [Z T
1 , Z T

2 , . . . , Z T
n ]T remains in a

compact set �0
Z = �0

Z1

⋃
�0

Z2
, . . . ,

⋃
�0

Zn
, which is

specified as

�0
Z =

{

(z, θ̃ , ȳdi)||zi | ≤ μ, θ̃2 ≤ γμ2

b
, ȳd j ∈ �d j ,

j = 1, 2, . . . , n − 1,∀t ≥ t0

}

(39)
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where the size of the positive constant μ depends on the
initial conditions and design parameters k j , σ , and γ ;

3) the closed-loop signal z = [z1, z2, . . . , zn] ∈ Rn will
eventually converge to a compact set defined by

�s =
{

z| ‖z‖2 ≤ 2�
}

(40)

where ‖z‖2 = ∑n
j=1 z2

j , � is a constant related to the
design parameters. Therefore, �s can be made as small
as desired using a trial-and-error method to obtain the
appropriate design parameters.

Proof: It follows from Lemma 3 and the definition of U j

in (33) for z j ∈ �0
Z j

, j = 1, . . . , n, that

n∑

j=1

(

1 − 16 tanh2
(

z j

ν j

))

U j ≤ 0.

Then, (36) can be rewritten as

V̇n ≤
n∑

j=1

(

−bk j1z2
j + bθ̃

2η2
j

ST
j (Z j )Sj (Z j )z

2
j + d j

)

+
n∑

j=2

z j

(

v j−1(Z j )− ∂α j−1

∂θ̂

˙̂θ
)

.

Considering the Lyapunov function candidate V in (38), its
time derivative is

V̇ ≤
n∑

j=1

⎛

⎝−bk j1z2
j + d j )+

n∑

j=2

z j (v j−1(Z j )− ∂α j−1

∂θ̂

˙̂
θ

⎞

⎠

+ bθ̃

γ

⎛

⎝
n∑

j=1

γ

2η2
j

ST
j (Z j )Sj (Z j )z

2
j − ˙̂θ

⎞

⎠ . (41)

In view of the adaptation law θ̂ in (14), (41) is further
written as

V̇ ≤
n∑

j=1

(
−bk j1z2

j + d j

)
+ bσ θ̂ θ̃

γ

+
n∑

j=2

z j

(

v j−1(Z j )− ∂α j−1

∂θ̂

˙̂θ
)

. (42)

From (42), the key problem of the proof is how to appro-
priately choose the smooth function v j−1(Z j ) to eliminate
the last term in (42). Next, we will determine v j−1(Z j )

such that
∑n

j=2 z j (v j−1(Z j ) − (∂α j−1/∂θ̂)
˙̂θ) ≤ 0. By the

definition of the adaptation law ˙̂
θ in (14) and noting Lemma 1,

we have

−
n∑

j=2

z j
∂α j−1

∂θ̂

˙̂
θ

= −
n∑

j=2

z j
∂α j−1

∂θ̂

(
n∑

i=1

γ ST
i (Zi )Si (Zi )z2

i

2η2
i

− σ θ̂

)

≤
n∑

j=2

z j
∂α j−1

∂θ̂
σ θ̂ +

n∑

j=2

n∑

i= j

γ s2z2
i

2η2
i

∣
∣
∣
∣z j
∂α j−1

∂θ̂

∣
∣
∣
∣

−
n∑

j=2

z j
∂α j−1

∂θ̂

j−1∑

i=1

γ ST
i (Zi )Si (Zi )z2

i

2η2
i

=
n∑

j=2

z j

⎛

⎝
∂α j−1

∂θ̂
σ θ̂ − ∂α j−1

∂θ̂

j−1∑

i=1

γ ST
i (Zi )Si (Zi )z2

i

2η2
i

+
j∑

i=2

γ s2z j

2η2
j

∣
∣
∣
∣zi
∂αi−1

∂θ̂

∣
∣
∣
∣

⎞

⎠ .

Then, choosing v j−1(Z j ) as

v j−1(Z j ) = ∂α j−1

∂θ̂

j−1∑

i=1

γ ST
i (Zi )Si (Zi )z2

i

2η2
i

− ∂α j−1

∂θ̂
σ θ̂ −

j∑

i=2

γ s2z j

2η2
j

∣
∣
∣
∣zi
∂αi−1

∂θ̂

∣
∣
∣
∣

we have
n∑

j=2

z j

(

v j−1(Z j )− ∂α j−1

∂θ̂

˙̂θ
)

≤ 0. (43)

Substituting (43) into (42) and noting θ̂ = θ − θ̃ , we obtain

V̇ ≤
n∑

j=1

(
−bk j1z2

j + d j

)
+ bσ θ̃ θ̂

γ

≤ −
⎛

⎝
n∑

j=1

bk j1z2
j + bσ θ̃2

2γ

⎞

⎠ + C (44)

where C = ∑n
j=1 d j + bσθ2/(2γ ) with d j = η2

j/2 +
ε2

j/(4bk j0).

It follows from the definition of control gains ki in (13) that

V̇ ≤ −
n∑

j=1

bk j2z2
j − bσ θ̃2

2γ
−

n∑

j=1

bε j cosh(z j )z2
j

1 + z2
j

n∑

l=1

(n − l + 1)
∫ t

t−τ

ρ2
l j (x j (σ ))

2(1 − τmax)
dσ + C. (45)

Since [t − τ j (t), t] ⊂ [t − τ, t] based on
τ j (t) ≤ τ , we have

∫ t
t−τ j (t)

(ρ2
l j (x j (σ ))/2(1 − τmax))dσ ≤

∫ t
t−τ (ρ

2
l j (x j (σ ))/2(1 − τmax))dσ . Moveover, b and ε j are

positive definite, it can be obtained in terms of (9) that
ψ(z j ) = cosh(z j )z2

j/(1 + z2
j ) > 0. Then, (45) becomes

V̇ ≤ −
n∑

j=1

bk j2z2
j −

n∑

j=1

bε jψ(z j )

n∑

l=1

(n − l + 1)

∫ t

t−τi (t)

ρ2
l j (x j (σ ))

2(1 − τmax)
dσ − bσ θ̃2

2γ
+ C. (46)

Based on the construction of the quadratic function Vzi in
(11) and the Lyapunov–Krasovskii functional candidate VPi in
(12), and the property of even function ψ(z j ) in (9), we can
obtain from (38)

V̇ ≤ −aV + C (47)
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which implies that

V ≤ (V (t0)− �)e−a(t−t0) + �

≤ V (t0)+ �, ∀t ≥ t0 (48)

where a = min{2bk j2, bε jψ(0.2554ν j ), σ }, � = C/a. From
(48), it is known that V , z j , and θ̃ , i = 1, 2, . . . , n, are
bounded. θ̂ = θ − θ̃ is bounded because of the boundedness
of θ and θ̃ . For z1 = x1 − yd and yd being bounded, x1 is
bounded. Since α1 is a function of bounded signals x1, yd , ẏd ,
and θ̂ , α1 is also bounded. From x2 = z2 +α1, x2 is bounded.
Similarly, αi−1 and xi , i = 3, . . . , n, are bounded. Therefore,
all the signals of the closed-loop system are bounded.

Considering the definition of V in (38) and applying (48),
the following inequalities hold:

n∑

j=1

z2
j

2
≤ V ≤ V (t0)+ �,

bθ̃2

2γ
≤ V ≤ V (t0)+ �. (49)

Let μ = √
2(V (t0)+ �), we have

|z j | ≤ μ, θ̃2 ≤ γμ2

b
. (50)

Therefore, we have the compact set �0
Z j

in Theorem 1 over
which the RBF neural universal approximation is applied with
its feasibility.

In addition, according to (11) and (38), we have that∑n
j=1 z2

j/2 ≤ V . Using the first inequality in (48), the
following inequality holds:

lim
t→∞ ‖z‖ ≤ √

2�.

Note that k j0, k j2, ε j , η j , ν j , σ j , and γ j , i = 1, 2, . . . , n,
are design parameters, b, εi and θ are constants. Therefore, by
appropriately online-tuning the design parameters, the compact
set �s can be made as small as desired. Subsequently, the
tracking error z1 = y − yd can be shown to converge to a
small neighborhood of the origin. This completes the proof.

Remark 6: It should be pointed out that the proposed
control algorithm for pure-feedback nonlinear systems with
unknown state time-varying delays is very different from the
previous work on the pure-feedback delay-free system. The
main differences are as follows:

1) from the system (1), every time-delay function
hi (x̄n,τ (t)) contains not only time-varying delay states
x1(t − τ1(t)), . . . , xi (t − τi (t)) of the previous chan-
nels, but also all the later delay states xi+1(t −
τi+1(t)), . . . , xn(t − τn(t)). The time-delay functions
hi (x̄n,τ (t)), i = 1, 2, . . . , n, maybe cause the circular
construction of controller and the singularity problem.
Therefore, to reduce the design difficulty caused by
the time-varying delay functions hi (x̄n,τ (t)), the sep-
aration technique in Lemma 2 is used to decompose
hi (x̄n,τ (t)) into a series of continuous functions ρ2

il (xl(t−
τl(t))), l = 1, 2, . . . , n, of each delayed state xl(t −
τl(t)). This method avoids the circular construction of
controller and the use of any assumption on unknown
time-delay functions hi (x̄n,τ (t));

2) to compensate for the time-delay functions ρ2
1l(xl(t −

τl(t))) obtained by decomposing h1(x̄n,τ (t)), we recur-
sively construct the novel Lyapunov–Krasovskii func-
tionals VPl in (12), which can completely compensate

for all the time-delay functions until the last step of
backstepping in (34). However, the use of Lyapunov–
Krasovskii functionals VPi in (12) will induce the re-
maining term

∑n
l=1((n − l + 1)ρ2

l j (x j )/2z j (1 − τmax))
in (20), (28) and (34). The term makes it be infeasible
to be approximated by an RBF neural network, since it is
discontinuous at z j = 0. Therefore, hyperbolic tangent
function tanh(z j/ν j ) has to be introduced in (21), (29),
and (35) to overcome the singularity problem;

3) although the circular construction of controller and
the singularity problem caused by time-delay functions
hi (x̄n,τ (t)) have been solved, it is very difficult from
(44) to deduce the stability result V̇ = −aV + C with
a and C being constants. The main reason comes from
the use of Lyapunov–Krasovskii functionals VPi in the
global Lyapunov function V . Therefore, we must put
our efforts to make the proof be carried over. Based
on the form of VPi in (12), the control gains k j1
are modified as a dynamic form with a even function,
i.e., ki1 = ki2 + (εi cosh(zi )/1 + z2

i )
∑n

l=1(n − l +
1)

∫ t
t−τ (ρ

2
li (xi (σ ))/2(1 − τmax))dσ . The modified con-

trol gains k j1 make the stability analysis to be carried
out. [See the inequalities (45) and (46) for details.]

IV. SIMULATION STUDIES

Example 1: To illustrate the validity of the proposed adap-
tive neural control, a class of pure-feedback nonlinear systems
with multiple time-varying delay states is simulated, which is
described by the following differential equation:

⎧
⎪⎨

⎪⎩

ẋ1 = 1−e−x1

1+e−x1
+ x3

2 + x2e−1−x2
1 + h1(x̄2,τ (t))

ẋ2 = x2
1 + 0.1(1 + x2

2)u + f (u)+ h2(x̄2,τ (t))

y = x1

(51)

where f (u) = 0.15u3 + sin(0.1u), h1(x̄2,τ (t)) = 0.5x2
1(t −

τ1(t))x2(t − τ2(t)), h2(x̄2,τ (t)) = x1(t − τ1(t))x2(t − τ2(t)).
Choose the reference signal as yd = sin(0.5t) +

0.5 sin(1.5t). The control objective is to design an adaptive
neural tracking control for System (51) such that all the signals
in the closed-loop system remain bounded and the system
output y follows the given reference signal yd .

Based on Theorem 1, the adaptive neural control law is
chosen as

u = −k2z2 − θ̂

2η2
2

ST
2 (Z2)S2(Z2)z2 + x20 (52)

where Z2 = [x1, x2, θ̂ , ς1, ω1]T with ς1 = ∫ t
t−τ (ρ

2
l1(x1(σ ))/

2(1 − τmax))dσ , ω1 = (∂α1/∂ ȳd1) ˙̄yd1 + (∂α1/∂ς1)
(ρ2

l1(x1)− ρ2
l1(x1(t − τ ))/ 2(1 − τmax)), and choose the

virtual control law and adaptation law as

α1 = −k1z1 − θ̂

2η2
1

ST
1 (Z1)S1(Z1)z1 + x10,

˙̂θ =
2∑

i=1

γ

2η2
i

ST
i (Zi )Si (Zi)z

2
i − σ θ̂ .

In the simulation, choose initial conditions [x1(t), x2(t)]T =
[0.2, 0.5]T , time-varying delays τ1(t) = 0.2(1 + sin(t)),
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Fig. 1. System output y (–) and reference signal yd (-.-) of Example 1.
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Fig. 2. State variable x2 of Example 1.

τ2(t) = 1 − 0.5 cos(t), and θ̂ (0) = 0. Some other parameters
are chosen as follows: k1 = 5, k2 = 5, ε1 = 1, ε2 = 0.5, η1 =
η2 = 0.25, γ = 5, σ = 0.1, x10 = 0.2, and x20 = 0.5. More-
over, in the simulation we choose the RBF neural networks
in the following way. Neural network W T

1 S1(Z1) contains 75
nodes with centers spaced evenly in the interval [−1.5, 1.5]×
[−1.5, 1.5] × [−1.5, 1.5] and widths equal to 2. Neural net-
work W T

2 S2(Z2) contains 1125 nodes with centers spaced
evenly in the interval [−1.5, 1.5] × [−1.5, 1.5] × [0, 2] ×
[−3, 3] × [−2, 2] and widths equal to 2.

Simulation results are shown in Figs. 1–4, respectively.
Fig. 1 shows the system output y and the reference signal yd .
From Fig. 1, it can be seen that the tracking performance has
been achieved. Fig. 2 shows the response of state variable x2,
Fig. 3 displays the control input signal u, and Fig. 4 shows the
response curve of adaptive parameter θ̂ . Obviously, simulation
results show that the controller works well.

Example 2: To show the applicability of our result, consider
the following Brusselator model in dimensionless form, which
comes from [42]:

⎧
⎨

⎩

ẋ1 = C − (D + 1)x1 + x2
1 x2 + d1(t, x)

ẋ2 = Dx1 − x2
1 x2 + (2 + cos(x1))u + d2(t, x)

y = x1

(53)

where x1 and x2 denote the concentrations of the reaction
intermediates, C , D > 0 are parameters which describe the
supply of “reservoir” chemicals. d1(t, x) and d2(t, x) are the
external disturbance terms. The model was introduced in detail
in [43] and [44]. In this paper, the external disturbance terms
d1(t, x) and d2(t, x) are ignored. To study the effect caused
by time-varying delays, we add time-delay terms hi (x̄2,τ (t))
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Fig. 3. Control u of Example 1.
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Fig. 4. Adaptive parameter θ̂ of Example 1.
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Fig. 5. System output y (–) and reference signal yd (-.-) of Example 2.

in (53) and obtain the following time-delay Brusselator model:
⎧
⎨

⎩

ẋ1 = C − (D + 1)x1 + x2
1 x2 + h1(x̄2,τ (t))

ẋ2 = Dx1 − x2
1 x2 + (2 + cos(x1))u + h2(x̄2,τ (t))

y = x1

where h1(x̄2,τ (t)) and h2(x̄2,τ (t)) are unknown delay-state
terms, which are chosen as the functions 2 cos(x1(t −
τ1(t)))x2(t −τ2(t)), 0.2 sin(x2(t −τ2(t)))x1(t −τ1(t)), respec-
tively. Obviously, the Brusselator model is in the cascade form
(1) under the assumption that x1 
= 0 [42]. In the simulation,
we choose the reference signal yd = 3+ sin(t)+0.5 sin(1.5t),
C = 1, D = 3, τ1(t) = −0.5 cos(t), τ2 = 1 + 0.5 sin(t), the
upper bound of these time-varying delays and their derivatives
is τ = 1.5 and τmax = 0.5, respectively, RBF neural network
W T

1 S1(Z1) are chosen by containing 81 nodes with centers
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Fig. 6. State variable x2 of Example 2.
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Fig. 7. Control u of Example 2.

spaced evenly in the interval [1, 4] × [1, 4] × [−1.5, 1.5] and
widths being equal to 2, neural network W T

2 S2(Z2) is con-
structed by containing 1125 nodes with centers spaced evenly
in the interval [1, 4] × [1, 4] × [0, 6] × [−3, 3] × [−2, 2]
and widths equal to 2.

In the simulation, we choose design parameters of the
controller (52) as follows: k10 = k11 = 3, k20 = k21 = 4,
ε1 = ε2 = 0.5, η1 = 0.25, η2 = 0.35, γ = 6, σ = 0.05,
and x10 = x20 = 0. The simulation is run under the initial
conditions [x1(t), x2(t)]T = [2.5, 1]T for −τ ≤ t ≤ 0,
and θ(0) = 0. Simulation results are shown in Figs. 5–8,
respectively. Fig. 5 shows that the system output y can follow
the given reference signal yd . Figs. 6–8 show the responses
of other variables x2, u, θ̂ . Obviously, simulation results
show that the controller works well and achieves the desired
convergence performance.

Example 3: To further show the control capability of the
proposed control scheme, we consider the following third-
order nonlinear time-delay system:

⎧
⎪⎪⎨

⎪⎪⎩

ẋ1 = x1 sin(x1)+ (0.5 + x2
1 )x2 + x1(t − τ1(t))

ẋ2 = x2e−0.5x1 + (1 + x2
2 )x

3
3 + h2(x̄3,τ (t))

ẋ3 = x1x2x3 + f (x1, x2, u)+ h3(x̄3,τ (t))
y = x1

(54)

where h2(x̄3,τ (t)) = x1(t − τ1(t))x2(t − τ2(t))x3(t − τ3(t)),
h3(x̄3,τ (t)) = x2(t − τ2(t))x3(t − τ3(t)), and f (x1, x2, u) =
cos(u)+ (2 + cos(x1x2))u.

It can be clearly seen that the system (54) is consistent
with the structure of the studied system (1). By Theorem 1,
the virtual control laws αi , the true control law u, and the
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Fig. 8. Adaptive parameter θ̂ of Example 2.
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Fig. 9. System output y (–) and reference signal yd (-.-) of Example 3.
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Fig. 10. State variable x2 of Example 3.

adaptive laws ˙̂θ are chosen respectively as

αi = −ki zi − θ̂

2η2
i

ST
i (Zi )Si (Zi )zi + xi0

˙̂θ =
3∑

i=1

γ

2η2
i

ST
i (Zi)Si (Zi )z

2
i − σ θ̂

where i = 1, 2, 3, z1 = x1 − yd with the reference signal
yd = sin(t), z2 = x2 − α1, z3 = x3 − α2, Z1 = [x1, yd , ẏd ]T ,
Z2 = [x1, x2, θ̂ , ς1, ω1]T , and Z3 = [x1, x2, x3, θ̂ , ς2, ω2]T .
In the simulation, the design parameters are chosen as follows:
k1 = 4, k2 = 8, k3 = 8, ε1 = 0.5, ε2 = ε3 = 1, η1 = 0.5,
η2 = η3 = 0.6, γ = 0.35, and σ = 0.03. Moreover, the same
RBF neural networks W T

1 S1(Z1) and W T
2 S2(Z2) are taken to

be the same as in Example 1, and W T
3 S3(Z3) is chosen to

contain 729 nodes with centers spaced evenly in the interval
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Fig. 11. Control u of Example 3.
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Fig. 12. Adaptive parameter θ̂ of Example 3.

[−3, 3] × [−3, 3] × [−3, 3] × [0, 3] × [0, 3] × [−1, 1]
and widths being equal to 4.

In the simulation, we assume time delays τ1(t) = 0.2 sin(t),
τ2(t) = 0.5 cos(t), and τ3 = 0.5 + 0.5 sin(t), then τ = 1 and
τmax = 0.5. Under initial conditions [x1(t), x2(t), x3(t)]T =
[0.1,−0.5, 0.1]T for −τ ≤ t ≤ 0, and θ̂ (0) = 0, simulation
is run under x10 = x20 = x30 = 0, and the results show that
under the action of the presented controller, good convergence
performance is achieved for the system (54). The details are
shown in Figs. 9–12.

Remark 7: Usually, the tracking performance depends on
the design parameters of adaptive neural controller (13). The-
oretically, a good tracking performance can be achieved by
choosing control gains ki sufficiently large or ηi sufficiently
small. However, how to choose the optimal parameters, such
as ki , ηi , σ , and so on, to achieve the optimal tracking perfor-
mance is still an open problem. In the presented simulations,
the design parameters are set using a trial-and-error method.

On the other hand, the proposed scheme is especially suit-
able to the control of higher order nonlinear systems since only
one parameter θ̂ in (14) needs to be online-tuned. As such, the
computational speed of the scheme is improved greatly (see
Figs. 1, 5, 9 for details). As mentioned in [45], as the system
order increases, there will be more inputs n to the neural
networks, which will cause the network to contain at least 5n

nodes by supposing at least five evenly spaced centers for each
input. Consequently, it can be clearly seen that there are a large
number of parameters needed to be online-tuned because of
the weight values Wi themselves being used as the estimated
parameters in the previous adaptive neural control schemes.

V. CONCLUSION

A simple and effective control approach has been presented
for non-affine pure-feedback system with multiple time-
varying delay states. The use of separation technique and the
norm of neural weight vector not only avoids any restriction
on unknown time-delay terms with all time-varying delay
states, but also overcomes the curse of dimensionality of
adaptive parameters. The proposed control scheme has been
proven to be able to guarantee the boundedness of all the
closed-loop signals. Simulation results have illustrated the
effectiveness of the proposed scheme.
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